Альтернативное лечение рака

теоретическое решение проблемы рака
Текущее время: 29-03, 00:47

Часовой пояс: UTC + 3 часа




Начать новую тему Ответить на тему  [ 1 сообщение ] 
Автор Сообщение
 Заголовок сообщения: металлы жизни
СообщениеДобавлено: 29-03, 00:14 
Не в сети
Медицинский работник
Аватара пользователя

Зарегистрирован: 14-02, 23:20
Сообщения: 423
Откуда: планета ЗЕМЛЯ
металлы жизни

http://www.ref.by/refs/93/21876/1.html


На грани химии, биологии и медицины возникла новая научная область –
бионеорганическая химия. Бионеорганическая химия рассматривает роль
металлов в возникновении и развитии различных процессов в здоровом и
больном организме, создаёт новые эффективные препараты на основе
металлоорганических соединений, активно участвует в борьбе за сохранение
здоровья людей и продление человеческой жизни.
Особенно чутко организм реагирует на изменение концентрации
микроэлементов, т.е. элементов, присутствующих в организме в количестве
меньше одного грамма на 70кг массы человеческого тела. К таким элементам
относятся медь, цинк, марганец, кобальт, железо, никель, молибден.
Доказано, что с изменением концентрации цинка связано течение раковых
заболеваний
, кобальта и марганца – заболевание сердечной мышцы, никеля –
процессов свёртывания крови. Определение концентрации этих элементов в
крови позволяет иногда обнаружить ранние стадии различных заболеваний. Так,
изменение концентрации цинка в сыворотке крови связано с протеканием
заболевания печени и селезёнки, а концентраций кобальта и хрома – некоторых
сердечно-сосудистых заболеваний.
По мнению специалистов, современное человечество, особенно в больших
городах, живёт на грани скрытой нехватки многих элементов. В стрессовых
ситуациях скрытая нехватка может стать явной и привести к появлению тяжёлых
заболеваний. Так, например, скрытое течение рака может продолжаться от 5 до
40 лет, что, возможно, обусловлено постепенным изменением концентрации
микроэлементов вследствие старения организма. С другой стороны, существуют
предположения о том, что целенаправленное изменение концентрации различных
элементов в организме может быть использовано для продления жизни человека.

В настоящее время известно более ста химических элементов, однако
только небольшое число из них входит в состав живого на планете Земля. На
таблице1 представлена периодическая система Д.И.Менделеева, в которой
отмечены основные элементы, играющие особо важную роль в физиологических и
патологических процессах в организме человека. Красным цветом обозначены 16
« элементов жизни » : 10 металлов (Na, K, Mg, Ca, Zn, Cu, Co, Mn, Fe,
Mo) и 6 неметаллов (H, O, N, C, P, S), составляющих основу биологически
важных молекул и макромолекул. Синим цветом показаны элементы, находящиеся
в небольших количествах в живых организмах и растениях (B, Cr, F, Cl, Br,
I).
В организме человека уже давно и точно определился баланс оптимальных
концентраций биологически важных соединений между их поступлением и
выведением в результате жизнедеятельности.
Исходя из современной квантомеханической интерпретации периодической
системы, классификация элементов проводится в соответсвии с их электронной
конфигурацией. Она основана на степени заполнения различных электонных
орбиталей(s, p, d, f) электронами. В соответствии с этим элементы
подразделяют на s-,p-, d-,f- элементы.
В организме человека присутствуют в основном ионы лёгких металлов
Na+,K+,Mg2+,Cu2+, относящихся к s-элементам, и ионы
Mn2+,Fe2+,Co3+,Cu2+,Zn2+ относящиеся к d-элементам. И только содержащийся в
организме тяжёлый d-элемент молибден (Мо) – нарушает общую
биогеохимическую установку – построение биологических структур только из
лёгких элементов. Все эти металлы встречаются в нашем организме в виде
твёрдых соединений или в виде их водных растворов.
Исследование физиологической роли металлов, а также их значения в
диагностике, профилактике и лечении болезней является одним из новых
направлений в медицинской науке. Наиболее показательно при этом изучение
состава металлов в крови человека (табл2). Процессы превращения
(метаболические процессы ) протекают здесь наиболее интенсивно. Средняя
продолжительность жизни большинства элементов крови составляет не более
нескольких часов или суток.

К s-элементам относятся элементы I и II групп периодической системы.
Значение s-элементов для организма огромно. Они участвуют в создании
буферных систем организма, обеспечение необходимого астматического
давления, возникновении мембранных потенциалов, в передаче нервных
импульсов (Na,k), структурообразования (Mg,Ca).
НАТРИЙ, КАЛИЙ.
Ионы натрия и калия распределены по всему организму человека, причём
первые входят преимущественно в состав межклеточных жидкостей, вторые
главным образом находятся внутри клеток. Подсчитано, что в человеческом
организме содержится 250г калия и 70г натрия. От концентрации обоих ионов
зависит чувствительность (проводимость) нервов и сократительная способность
мышц. Шок при тяжёлых ожогах обусловлен потерей ионов калия из клеток. ОПУХОЛЬ МОЖНО СРАВНИТЬ С ОЖОГОМ
Введение ионов калия способствует расслаблению сердечной мышцы между
сокращениями сердца. Хлорид натрия служит источником для образования
соляной кислоты в желудке. Гидрокарбонат натрия – буферная соль –
поддерживает кислотнощелочное равновесие в жидких средах организма и служит
переносчиком углерода
. Лечение некоторых психических заболеваний основано
на замене ионов K+ и Na+ на ионы Li+.
Из солей натрия и калия наибольшее значение для медицины имеют
следующие соединения:
Хлорид натрия (поваренная соль) NaCl.Раствор хлорида натрия (0.85-0.9
%)- физиологический раствор – применяется для внутривенных вливаний при
больших кровопотерях. Кроме того, хлорид натрия употребляется для
ингаляций, ванн, душей, а также при лечении катаральных состояний некоторых
слизистых оболочек.
Гидрокарбонат натрия (пещевая сода) NaHCO3 – белый кристаллический
порошок. Применяется при повышенной кислотности желудочного сока, язвенной
болезни желудка и двенадцатиперсной кишки, изжоге, подагре, диабете,
катарах верхних дыхательных путей. Наружно употребляется как слабая щёлочь
при ожогах, для полосканий, промываний и ингаляций при насморке,
конъюктивитах, стоматитах, ларингитах и т.д.
МАГНИЙ И КАЛЬЦИЙ.
Магний и кальций находятся во II группе периодической системы
Д.И.Менделеева и также относятся к s-элементам. По своим характеристикам их
ионы в большей степени отличаются друг от друга, чем ионы натрия и калия.
Так, ион магния по сравнению с ионом кальция проявляет большую тенденцию к
образованию ковалентных донорно- акцепторных связей с различными
электродонорными атомами (N,O),входящими в состав биологических
макромолекул (белки, нуклеиновые кислоты). Это обуславливает большие
структурообразующие свойства магния по сравнению с кальцием.
Ионы Mg2+ образуют в клетках комплексы с нуклеинывыми кислотами,
учавствуют в передаче нервного импульса, сокращении мышц, метаболизме
углеводов. Магний можно назвать центральным элементом энергетических
процессов, связанных с окислительным фосфорилированием. Избыток магния
играет роль депрессора нервного возбуждения, недостаток – вызывает тетамию
(судороги).
Активность большинства ферментов переноса (гирансфероз) зависит от
магния. Магний – один из основных активаторов ферментативных процессов. В
частности, он активирует ферменты синтеза и распада аденозинтрифосфорной и
гуаминтрифосфорной кислоты, участвует в процессах переноса фосфатных групп.
Магний входит в состав хлорофилла; субъединицы рибосом (клеточных
органоидов, на которых происходит синтез белка) связаны ионами Mg2+.
Соддержание магния в организме около 42г. повышенное количество его в
оргнизме может вызвать наркотическое состояние.

Кальций – один из пяти (O, C, H, N, Ca) наиболее распространенных
элементов в организме человека. Содержание его в организме составляет около
1700г на 70кг массы. Ионы Ca2+ участвуют в структурообразовании (Ca
составляет основу костной ткани), сокращении мышц, функционировании нервной
системы. От содержания ионов Ca2+ зависит проницаемость клеточных мембран.
Кальций нужен для роста костей и зубов, образования молока у кормящих
женщин, регулирования нормального ритма сокращений сердца, а также
осуществления процесса свёртывания крови. Свёртывание крови можно ускорить,
вводя в организм избыточное количество солей кальция, например при
кровотечении. Ежедневная доза кальция, необходимая организму, составляет
примерно 1г. При понижении содержания Ca в крови он начинает вымываться
кровью из костной ткани, что в свою очередь приводит к размягчению и
искривлению костного скелета. Недостаток Ca в плазме крови может вызвать
судороги мышц и даже конвульсии (сильные судороги всех мышц). Образование
камней в желчных и мочевыводящих путях, склеротические изменения
кровеносных сосудов также связаны с отложением в организме солей Ca в
результате нарушения нормальной жизнедеятельности организма.
Из соединений Ca и Mg имеют большое значение следующие:
Гидроксид Ca (гашёная известь) Ca(OH)2 используется в санитарной
практике для дезинфекций. Кроме того, в форме известковой воды (насыщенный
водный раствор Ca(OH)2) применяется наружно и внутрь в качестве
противовоспалительного, вяжущего и дезинфицирующего средства.
Сульфат магния (горькая соль) MgSO4(7H2O применяется внутрь как
слабительное. Сульфат Mg применяют также при лечении столбняка, хори и
других судорожных состояний. При гипертонии его вводят в вену, а как
желчегонное – в двенадцатиперстную кишку.
Хлорид кальция CaCl2 применяют как успокаивающее средство при лечении
неврозов, при бронхиальной астме, туберкулёзе.
Жжёный гипс 2CaSO4(H2O получается путём прокаливания природного гипса
CaSO4(2H2O при 150-180 0С. При замешивании с водой он быстро твердеет,
превращается опять в кристаллический гипс CaSO4(2H2O. На этом свойстве
основано применение его в медицине для гипсовых повязок при переломах
костей.
Карбонат кальция CaCO3 практически нерастворим в воде. Применяется
внутрь не только как кальциевый препарат, но и средство, адсорбирующее и
нейтрализующее кислоты. Особо чистый препарат идёт также для изготовления
зубного порошка.
D-ЭЛЕМЕНТЫ.

Ионы d-элементов (Zn,Mn,Fe,Cu,Co,Mo,Ni) имеют незаполненные d-
электронные слои. Это обуславливает различные степени окисления d-
элементов, их способность участвовать в различных окислительно-
восстановительных превращениях, возможность образовывать комплексные
соединения.
По сравнению с рассмотренными выше s-элементами, d-элементы
содержатся в организме в значительно меньших количествах. Однако их роль в
течении физиологических и патологических процессов в организме человека
огромна.

ЦИНК.

Цинк входит в состав большого числа ферментов и гормона инсулина. В
последние годы Zn особенно “повезло” в смысле обнаружения его новых
физиологических функций. Доказано, что он необходим для поддержания
нормальной концентрации витамина А в плазме. Дефицит Zn вызывает замедление
роста животных, нарушение кожного и волосяного покрова. Высказано
предположение, что постоянный недостаток цинка в рационе приводит к
появлению низкорослых людей.
Согласно последним данным, Zn оказывает значительное влияние на синтез
нуклеиновых кислот и активно участвует в хранении и передаче генетической
информации, играя роль своеобразного биологического переключателя.
Соединения цинка – весьма важные лечебные препараты. Препараты Zn
применяются в медицине как вяжущие и дезинфицирующие средства.
Сульфат цинка ZnSO4(7H2O входит в состав глазных капель как средство
при конъюктивитах.
Хлорид цинка ZnCl2 применяется в пастах как прижигающее средство, в
растворах – при язвах, как вяжущее и антисептическое средство.
МАРГАНЕЦ.

Марганец принадлежит к весьма распространённым элементам, составляя
0,03% от общего числа атомов земной коры. Среди тяжёлых металлов (атомный
вес больше 40), к которым относятся все элементы переходных рядов, марганец
занимает по распространенности в земной коре третье место вслед за железом
и титаном. Небольшие количества марганца содержат многие горные породы.
Вместе с тем, встречаются и скопления его кислородных соединений, главным
образом в виде минерала пиролюзита - MnO2. Большое значение имеют также
минералы гаусманит - Mn3O4 и браунит - Mn2O3.


Получение.

Чистый марганец может быть получен электролизом растворов его солей.
Однако, поскольку 90% всей добычи марганца потребляется при изготовлении
различных сплавов на основе железа, из руд обычно выплавляют прямо его
высокопроцентный сплав с железом - ферромарганец (60-90% - Mn и 40-10% -
Fe). Выплавку ферромарганца из смеси марганцовых и железных руд ведут в
электрических печах, причём марганец восстанавливается углеродом по
реакции:
MnO2 + 2C + 301 кДж = 2СО + Mn
Небольшое количество металлического марганца в лаборатории легко
приготовить алюмотермическим методом:
3Mn3O4 + 8Al = 9Mn + 4Al2O3; (H0 = -2519 кДж


Марганец - простое вещество и его свойства.

Марганец - серебристо-белый твёрдый хрупкий металл. Известны четыре
кристаллические модификации марганца, каждая из которых термодинамически
устойчива в определённом интервале температур. Ниже 7070 С устойчив (-
марганец, имеющий сложную структуру - в его элементарную ячейку входят 58
атомов. Сложность структуры марганца при температурах ниже 7070 С
обусловливает его хрупкость.
Некоторые физические константы марганца приведены ниже:
Плотность, г/см3 7,44
Т. Пл., 0С 1245
Т.кип., 0С ~2080
S0298, Дж/град(моль 32,0
(Hвозг. 298, кДж/моль. 280
E0298 Mn2+ + 2e = Mn, В -1,78

В ряду напряжений марганец располагается до водорода. Он довольно
активно взаимодействует с разбавленной HCl и H2SO4.В соответствии с
устойчивыми степенями окисления взаимодействие марганца с разбавленными
кислотами приводит к образованию катионного аквокомплекса [Mn(OH2)6]2+:
Mn + 2OH3- + 4H2O = [Mn(OH2)6]2+ + H2
Вследствие довольно высокой активности, марганец легко окисляется, в
особенности в порошкообразном состоянии, при нагревании кислородом, серой,
галогенами. Компактный металл на воздухе устойчив, так как покрывается
оксидной плёнкой (Mn2O3), которая, в свою очередь, препятствует дальнейшему
окислению металла. Ещё более устойчивая плёнка образуется при действии на
марганец холодной азотной кислоты.
Для Mn2+ менее характерно комплексообразование, чем для других d-
элемен-тов. Это связано с электронной конфигурацией d5 иона Mn2+. В
высокоспиновом комплексе электроны заполняют по одному все d-орбитали. В
результате, на орбиталях содержатся d-электроны как с высокой, так и с
низкой энергией; суммарный выигрыш энергии, обусловленный действием поля
лигандов, равен нулю.


Соединения Mn (II)

Большинство солей Mn(II) хорошо растворимы в воде. Мало растворимы
MnO, MnS, MnF2, Mn(OH)2, MnCO3 и Mn3(PO4)2. При растворении в воде соли
Mn(II) диссоциируют, образуя аквокомплексы [Mn(OH2)6]2+, придающие
растворам розовую окраску. Такого же цвета кристаллогидраты Mn(II),
например Mn(NO3)2 ( 6H2O, Mn(ClO4)2 ( 6H2O.
По химическим свойствам бинарные соединения Mn(II) амфотерны
(преобладают признаки основных соединений). В реакциях без изменения
степени окисления для них наиболее характерен переход в катионные
комплексы. Так, оксид MnO, как и гидроксид Mn(OH)2, легко взаимодействуют с
кислотами:
MnO + 2OH3+ + 3H2O = [Mn(OH2)6]2+
Со щелочами они реагируют только при достаточно сильном и длительном
нагревании:
Mn(OH)2 + 4OH- = [Mn(OH)6]4-
Из гидроксоманганатов (II) выделены в свободном состоянии
K4[Mn(OH)6], Ba2[Mn(OH)6] (красного цвета) и некоторые другие. Все они в
водных растворах полностью разрушаются. По этой же причине ни металлический
марганец, ни его оксид и гидроксид в обычных условиях со щелочами не
взаимодействуют.
Оксид MnO (серо-зелёного цвета, т.пл. 17800 C) имеет переменный
состав (MnO-MnO1,5), обладает полупроводниковыми свойствами. Его обычно
получают, нагревая MnO2 в атмосфере водорода или термически разлагая MnCO3.
Поскольку MnO с водой не взаимодействует, Mn(OH)2 (белого цвета)
получают косвенным путём - действием щелочи на раствор соли Mn (II):
MnSO4 (р) + 2KOH (р) = Mn(OH)2 (т) + K2SO4 (р)
Кислотные признаки соединения Mn (II) проявляют при взаимодействии с
однотипными производными щелочных металлов. Так, нерастворимый в воде
Mn(CN)2 (белого цвета) за счёт комплексообразования растворяется в
присутствии KCN:
4KCN + Mn(CN)2 = K4[Mn(CN)6] (гексацианоманганат (II))
Аналогичным образом протекают реакции:
4KF + MnF2 = K4[MnF6] (гексафтороманганат (II))
2KCl + MnCl2 = K2[MnCl4] (тетрахлороманганат (II))
Большинство манганатов (II) (кроме комплексных цианидов) в
разбавленных растворах распадается.
При действии окислителей производные Mn (II) проявляют
восстановительные свойства. Так, в щелочной среде Mn(OH)2 легко окисляется
даже молекулярным кислородом воздуха, поэтому осадок Mn(OH)2, получаемый по
обменной реакции, быстро темнеет:
+2 +4
6Mn(OH)2 + O2 = 2Mn2MnO4 + 6H2O
В сильнощелочной среде окисление сопровождается образованием оксоманганатов
(VI) - производных комплекса MnO42-:
+2 +5 +6 -1
3MnSO4 + 2KClO3 + 12KOH = 3K2MnO4 + 2KCl + 3K2SO4 + 6H2O
сплавление
Сильные окислители, такие, как PbO2 (окисляет в кислой среде), переводят
соединения Mn (II) в оксоманганаты (VII) - производные комплекса MnO-4:
+2 +4 +7 +2 +2
2MnSO4 + 5PbO2 + 6HNO3 = 2HMnO4 + 3Pb(NO3)2 + 2PbSO4 + 2H2O
Последняя реакция используется в аналитической практике как качественная
реакция на соединения марганца.


Соединения марганца в биологических системах

Марганец весьма интересен в биохимическом отношении. Точные анализы
показывают, что он имеется в организмах всех растений и животных.
Содержание его обычно не превышает тысячных долей процента, но иногда
бывает значительно выше. Например, в листьях свёклы содержится до 0,03%, в
организме рыжих муравьёв - до 0,05%, а в некоторых бактериях даже до
нескольких процентов Mn. Опыты с кормлением мышей показали, что марганец
является необходимой составной частью их пищи. В организме человека больше
всего марганца (до 0,0004%) содержит сердце, печень и надпочечники. Влияние
его на жизнедеятельность, по-видимому, очень разнообразно и сказывается
главным образом на росте, образовании крови и функции половых желёз.
В избыточных против нормы количествах марганцовые соединения
действуют как яды, вызывая хроническое отравление. Последнее может быть
обусловлено вдыханием содержащей эти соединения пыли. Проявляется оно в
различных расстройствах нервной системы, причём развивается болезнь очень
медленно.
Марганец принадлежит к числу немногих элементов, способных
существовать в восьми различных состояниях окисления. Однако в
биологических системах реализуются только два из этих состояний: Mn (II) и
Mn (III). Во многих случаях Mn (II) имеет координационное число 6 и
октаэдрическое окружение, но он может также быть пяти- и
семикоординационным (например, в [Mn(OH)2ЭДТА]2-). Часто встречающаяся у
соединений Mn (II) бледно-розовая окраска связана с высокоспиновым
состоянием иона d5, обладающим особой устойчивостью как конфигурация с
наполовину заполненными d-орбиталями. В неводном окружении ион Mn (II)
способен также к тетраэдрической координации. Координационная химия Mn (II)
и Mg (II) обладает известным сходством: оба катиона предпочитают в качестве
лигандов сравнительно слабые доноры, как, например, карбоксильную и
фосфатную группы. Mn (II) может заменять Mg (II) в комплексах с ДНК, причем
процессы матричного синтеза продолжают протекать, хотя и дают иные
продукты.
Незакомплексованный ион Mn (III) неустойчив в водных растворах. Он
окисляет воду, так что при этом образуются Mn (II) и кислород. Зато многие
комплексы Mn (III) вполне устойчивы (например, [Mn(C2O4)3]3- - оксалатный
комплекс); обычно октаэдрическая координация в них несколько искажена
вследствие эффекта Яна - Теллера.
Известно, что фотосинтез в шпинате невозможен в отсутствие Mn (II);
вероятно, то же относится и к другим растениям. В организм человека
марганец попадает с растительной пищей; он необходим для активации ряда
ферментов, например дегидрогеназ изолимонной и яблочной кислот и
декарбоксилазы пировиноградной кислоты.

В биологических системах марганец встречается в двух состояниях: Mn2+
и Mn3+. Марганец входит в состав ферментов, катализирующих окислительно-
восстановительные процессы. Его соединения участвуют в синтезе важного для
организма витамина С (аскорбиновая кислота).
Пермарганат калия KMnO4 используется в медицине в виде 5%-ого раствора
для обработки обожжённых мест и как кровоостанавливающее средство. Более
слабые его растворы употребляются для полоскания рта и горла.
Дезинфицирующие свойства растворов пермарганата калия обусловлены его
высокими свойствами.
Сульфат марганца MnSO4 был применён для лечения атеросклероза. При
этом оказалось, что клинически у больных уменьшались явления атеросклероза
сосудов и количество холестерина в крови доходило до нормального.

ЖЕЛЕЗО.

В организме человека железо встречается в виде двух катионов: Fe2+ и
Fe3+. Оно в основном входит в состав гемоглобина, содержащегося в
эритроцитах (80% от количества). Таким образом, общее содержание железа
определяется главным образом объёмом крови. Кроме того, в организме
существует депонированное (запасное) железо в виде высокомолекулярного
железосодержащего белка (ферритина), находящегося в клетках печени и
селезёнки. Клеточный фонд железа представляет железо клеточных ферментов
дыхания, а в мышцах – железо гемоглобина.
Обмен железа между плазмой крови и лимфой происходит при помощи
транспортного белка (трансферрина). Одна молекула трансферрина связывает 2
атома железа. Основной путь обмена железа таков: железо плазмы( железо
эритроцитов(гемолиз( (железо плазмы.
Обычно среднее содержание железа в организме не превышает 5г. В случае
потерь крови потребность в железе превышает его поступление в организм с
пищей. При внутривенных инъекциях железо вводится в виде аскорбата, цитрата
или коллоидных комплексов с углеводами, т.е. в виде слабо ионизированных
соединений.
Из соли железа наибольшую эффективность применения в медицине нашёл
сульфат железа (II) (железный купорос) FeSO11(7H2O – кристаллы бледно-
зелёного цвета, желтеющие при длительном хранении на воздухе. Он
используется при лечении анемии (малокровии), зависящей от дефицита железа
в организме, а также при слабости и истощении организма. Для этой же цели
употребляются восстановленное железо Fe и карбонат железа FeCO3.
Из солей железа (III) наиболее широко применяются гидрид железа
FeCl3(6H2O. Это соединение бурого цвета, хорошо растворимо в воде.
КОБАЛЬТ.

Катион кобальта Co2+ входит в состав важных белковых молекул,
активирует действие ряда ферментов. Комплекс трёхвалентного кобальта Co3+
составляет основу одного из важнейших витаминов В12. Значительный
недостаток этого витамина в организме вызывает злокачественную анемию.
Полагают, что дефицит Со в тканях снижает способность организма защищаться
от различных инфекций.
Считается, что человеческий организм реагирует на недостаток в нём
кобальта в меньшей степени, чем на недостаток других элементов. Однако
окончательного ответа на этот вопрос ещё нет, так как нет ещё полных данных
о накоплении (депонировании) витамина В12 в тканях организма человека.

МЕДЬ.

Важное биологическое значение имеют катионы Си+ и Си2+. В таком виде
медь входит в важнейшие комплексные соединения с белками (медь-протеиды).
Медь-протеиды, подобно гемоглобину, участвуют в переносе кислорода. Число
атомов меди в них различное:2- в молекуле цереброкуперина, участвующего в
хранении запаса кислорода в мозгу, и 8- в молекуле церулоплазмина,
способствующего переносу кислорода в плазме. Медь активирует синтез
гемоглобина, участвует в процессах клеточного дыхания, в синтезе белка,
образовании костной ткани и пигмента кожных покровов. Ионы меди входят в
состав медьсодержащих ферментов.
Наиболее используемым в медицине соединением меди является сульфат
меди CuSO4(5H2O, называемый медным купорсом. Сульфат меди (II) обладает
вяжущим и прижигающим действаием. Применяется в виде глазных капель при
отравлении белым фосфором. Все соли меди ядовиты, поэтому медную посуду
лудят, т.е. покрывают слоем олова, чтобы предотвратить возможность
образования медных солей.

МОЛИБДЕН.

В соответствии с конфигурацией и строением незаполненных слоёв
молибден может реализовать восемь различных степеней окисления. В
биологических системах Мо обнаружен в виде Мо+6, Мо+8 и реже Мо+3, Мо+4.
Возможно, это разнообразие форм существования и явилось причиной того, что
это самый тяжёлый биометалл используется наряду с лёгкими элементами для
построения живых организмов.
Физиологическая и патологическая роль молибдена в настоящее время
только изучается.
Мо входит в состав ряда ферментов. На примере молибдена можно
проследить связь и взаимовлияние метабиологической активности
микроэлементов. Избыток молибдена приводит к уменьшению концентрации меди и
кобальта. Непосредственное взаимодействие между Мо и Сu может приводить к
образованию в желудочно-кишечнем тракте труднорастворимого соединения
CuMoO4.
НИКЕЛЬ.

Принадлежность никеля к числу биоэлементов организма признаётся не
всеми исследователями. Например, Д.Ульямс в своей книге “Десять металлов
жизни” не включает никель в число биометаллов. Одннако последние
исследования других учёных указывают на наличие и определённую роль никеля
в биологических системах. Показано, в частности, что никель участвует в
активировании ферментативных реакций гидролиза, реакций с участием
карбоксильной группы.
Огромное количество различных химических веществ (лекарства, пищевые
добавки, продукты загрязнения окружающей среды, химической обработки
растений и т.д.) попадают в организм человека. Действие этих веществ, а
также их многочисленных комбинаций не только оказывает влияние отдельный
организм в течение всей его жизни, но и передаётся по наследству от
поколения к поколению. В связи с этим становится необходимым знание
взможных последствий воздействия различного рода химических соединений на
здоровье человека. Exclamation

_________________
http://rak.bestbb.ru/


Вернуться к началу
 Профиль  
 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ 1 сообщение ] 

Часовой пояс: UTC + 3 часа


Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 0


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения

Найти:
Перейти:  
cron
Powered by Forumenko © 2006–2014
Русская поддержка phpBB